Physics IV
ISI B.Math
Final Exam : May 6, 2022

Total Marks: 50
Time : 3 hours
Answer all questions

1.(Marks: $5+5=10$)
(a) A particle of mass M and energy E decays into two identical particles. In the lab frame, one is emitted at a 90 degree angle as shown in the figure. What are the energies of the created particles in the lab frame?
(b) Let V be a four-vector. Show that if V is future pointing timelike, there exists a coordinate system in which it has components ($a, 0,0,0$) where $a=\sqrt{V^{\mu} V_{\mu}}$
2. (Marks : $\mathbf{1}+\mathbf{2}+\mathbf{2}+\mathbf{5}=\mathbf{1 0})$

A one dimensional harmonic oscillator of mass m has potential energy $V(x)=\frac{1}{2} m \omega^{2} x^{2}$. Consider the operators $a=\frac{1}{\sqrt{2 \hbar m \omega}}(m \omega x+i p)$ and $a^{\dagger}=\frac{1}{\sqrt{2 \hbar m \omega}}(m \omega x-i p)$
(a) Do a and a^{\dagger} correspond to physically measurable observables ? Justify your answer.
(b) Express the Hamiltonian \hat{H} in terms of the number operator $N=a^{\dagger} a$ Find the eigenvalues of the energy in terms of the eigenvalues n of the number operator where $n=0,1,2 \ldots$
(c) Show that if $\mid n>$ is an eigenvector of the number operator N with eigenvalue n, then $a^{\dagger} \mid n>$ is an eigenvector of N with eigenvalue $n+1$
(d) Find the expectation value of the potential energy $\langle V\rangle$ in the state $|n\rangle$. Show that the ground state $\mid 0>$ is a minimum uncertainty state
3. (Marks : 5+2+3=10)

A particle of mass m is moving in an infinite potential well of width a under the potential $V(x)=0$ for $0 \leq x \leq a$ and $V(x)=\infty$ otherwise.
(a) Find the possible values of the energies E_{n} of the stationary states and the corresponding wave functions $\psi_{n}(x)$ (solutions of the time independent Schrodinger equation)
(b) If the particle starts out in starts out in the left half of the well, and is at $(t=0)$ equally likely to be found at any point in that region, what is the initial wave function $\Psi(x, 0)$? (Assume it is real)
(c) With the particle in the initial state described in part (b), what is the probability that a measurement of energy would yield the value $\frac{\pi^{2} \hbar^{2}}{2 m a^{2}}$?
4. $($ Marks : $3+4+3=10)$
(a) Show that the energy E must exceed the minimum value of $V(x)$ for every normalizable solution to the time independent Schrödinger equation in one dimension.
(b) Let $P_{a b}(t)$ be the probability of finding a particle of mass m in the range $(a<x<b)$ at time t. Show that

$$
\frac{d P_{a b}}{d t}=J(a, t)-J(b, t)
$$

where $J(x, t)=\frac{i \hbar}{2 m}\left(\Psi(x, t) \frac{\partial \Psi^{*}(x, t)}{\partial x}-\Psi^{*}(x, t) \frac{\partial \Psi(x, t)}{\partial x}\right)$ and $\Psi(x, t)$ is the wave function of the particle
(c) If $V(x)$ is an even function of x, then the solutions $\psi(x)$ of the one-dimensional time-independent Schrödinger equation can always be taken to be either even or odd.
5. (Marks : $2+4+4=10)$
(a) A free particle of mass m moves in one dimension. At time $t=0$, the normalized wave function of the particle is

$$
\psi(x, 0)=\left(2 \pi \sigma_{x}^{2}\right)^{-\frac{1}{4}} \exp \left(-\frac{x^{2}}{4 \sigma_{x}^{2}}\right)
$$

(i) Is the particle in a state of definite energy? Explain
(ii) Find the spread in momentum $\sigma_{p}=\sqrt{\left\langle p^{2}\right\rangle-\langle p\rangle^{2}}$ of the particle in this state. This particle is said to be in a state of minimum uncertainty. Justify the statement. Will this property continue to hold for $t>0$?
(b)Consider an observable represented by an operator \hat{A} which does not explicitly depend on time and whose commutator with the Hamiltonian \hat{H} is the constant $c,[\hat{H}, \hat{A}]=c$. Find $<\hat{A}>$ at $t>0$, given that the system is in a normalized eigenstate of \hat{A} at $t=0$, corresponding to the eigenvalue a.

